Total No. of Questions: 14]

[Total No. of Pages: 02

M. PHARMACY (Regular) DEGREE EXAMINATIONS, DECEMBER-2022 Second Semester PHARMACOLOGY

PRINCIPLES OF DRUG DISCOVERY

Time: Three Hours

Maximum: 75 Marks

SECTION - A

Answer any FIVE Questions.

5x5 = 25 M

- 1. Write a note on Zinc finger proteins.
- 2. Give an account on assay development for Hit identification.
- 3. Compare and contrast Traditional drug design and Rational drug design.
- 4. Write a short note on Hansch analysis.
- 5. Give a detailed note on Partial Least Square analysis (PLS).
- 6. What is SiRNA? Explain its role in drug discovery.
- 7. Define Molecular docking and add a note on Rigid and Flexible docking.

SECTION - B

Answer any FIVE Questions.

5x10 = 50 M

- 8. Explain the following:
 - a) Anti sense technologies.
 - b) Economics of drug discovery.
- 9. Discuss the applications of
 - a) X-ray crystallography in protein structure prediction.
 - b) Combinational chemistry.

- 10. Write a note on
 - a) Pharmacophore Mapping.
 - b) High throughput screening.
- 11. Give a detailed note on De novo drug design.
- 12. Discuss on the prodrug strategies to improve patient acceptability, drug solubility and site specific delivery of drugs.
- 13. Write a note on 3D QSAR approaches in drug design.
- 14. Discuss the computational methods for prediction of protein structure.

Total No. of Questions: 14]

[Total No.of Pages: 01

M. PHARMACY (REGULAR) DEGREE EXAMINATIONS, JANUARY-2022

Second Semester PHARMACOLOGY PRINCIPLES OF DRUG DISCOVERY

Time: Three Hours

Maximum: 75 Marks

SECTION - A

Answer any FIVE Questions.

5x5 = 25 M

- 1. Explain the role of Nucleic acid microarrays in drug discovery.
- 2. Describe the homology modeling method in prediction of protein structure.
- 3. Differentiate Traditional and Rational drug design.
- 4. Write a brief note on De novo drug design.
- 5. Explain the application iof prodrugs for site specific delivery and sustained drug action.
- 6. Explain the assay development for hit identification.
- 7. Discuss SAR vs QSAR.

SECTION - B

Answer any FIVE Questions.

5x10 = 50 M

- 8. Write a detailed note on Antisense technologies in drug discovery.
- 9. Explain Lead optimization and add a note on economics of drug discovery.
- 10. Write a note on
 - a) High thoroughput screening.
 - b) Pharmacophore Mapping.
- 11. Explain Free Wilson Analysis.
- 12. Write a note on
 - a) Partial least Square Analysis.
 - b) COMFA.
- 13. Discuss the application of NMR and X-ray crystallography in protein structure prediction.
- 14. Give an account on Drug likeness screening.

M.PHARMACY (Regular) DEGREE EXAMINATIONS, AUGUST-2019

Second Semester

PHARMACOLOGY

PRINCIPLES OF DRUG DISCOVERY

Time: Three Hours

Maximum marks:75

SECTION-A

Answer any FIVE of the following.

5X5 = 25M

- 1. Explain the differences between domain and motif in a protein giving suitable examples.
- 2. Why virtual screening is preferred over High throughput screening.
- 3. Discuss the significance of molecular docking in structure based drug design.
- 4. Explain the objectives of prodrug concept.
- 5. Mention the role of proteomics in target validation.
- 6. Add a note on physicochemical parameters useful to develop QSAR equation.
- 7. Write briefly about various statistical methods used in QSAR techniques.

SECTION-B

Answer any FIVE of the following.

5X10=50M

- Explain in detail about various steps involved in target validation. 8.
- Explain the methodology, applications and limitations of Hansch analysis. 9.
- Enlist and discuss about various established assay techniques in high throughput 10. screening for lead identification.
- Discuss about the predrug strategies to deliver site specific drugs and sustained 11. drug action.
- Add a detailed note on pharmacophore based screening in drug development 12. process.

P.T.O

13. Write about

- a) Methodology and applications of COMFA
- b) Zinc-finger proteins

14. Discuss on

- a) Role of X-ray crystallography in protein structure prediction.
- b) Threading

total No. of Questions :14]

M.PHARMACY (Supple) DEGREE EXAMINATIONS, FEB/MAR-2020

Second Semester

M.PHARMACY

PHARMACOLOGY

PRINCIPLES OF DRUG DISCOVERY

Time: Three Hours

Maximum marks:75

SECTION-A

Answer any FIVE Questions

5X5 = 25M

- 1. Discuss about COMFA. How it differs from COMSIA.
- 2. Explain the concept of pharmacophore mapping in drug design.
- 3. Discuss about the prodrug strategies to improve abscrption and distribution.
- 4. Explain the importance of NMR techniques in protein structure predictions.
- 5. Enumerate the role of siRNAs in target validation.
- 6. Discuss the methodology, applications and limitations of Free-wilson analysis.
- Explain the role of nucleic acid microarrays target identification and validation. 7.

SECTION-B

Answer any FIVE Questions

5X10=50M

- Discuss about the objective, mechanism of action and diseases targeted by 8. antisense oligonucleotides.
- Explain the role of combinational chemistry in lead identification process. 9.
- Describe the concept of structure-based pharmacophore approaches and their 10. applications in drug discovery.
- Briefly outline the methodology involved in various docking studies. Which 11. technique is more accurate.

P.T.O

- 12. Discuss the role of transgenic animals in target validation.
- 13. Explain the procedure involved in structural prediction of protein by homology modeling.
- 14. Write a note on
 - a) Drug likeness screening
 - b) Physicochemical parameters in QSAR.

